Covalently grafted VEGF(165) in hydrogel models upregulates the cellular pathways associated with angiogenesis.

نویسندگان

  • A M Porter
  • C M Klinge
  • A S Gobin
چکیده

Angiogenesis is an important biological response known to be involved in many physiological and pathophysiological situations. Cellular responses involved in the formation of new blood vessels, such as increases in endothelial cell proliferation, cell migration, and the survival of apoptosis-inducing events, have been associated with vascular endothelial growth factor isoform 165 (VEGF(165)). Current research in the areas of bioengineering and biomedical science has focused on developing polyethylene glycol (PEG)-based systems capable of initiating and sustaining angiogenesis in vitro. However, a thorough understanding of how endothelial cells respond at the molecular level to VEGF(165) incorporated into these systems has not yet been established in the literature. The goal of the current study was to compare the upregulation of key intracellular proteins involved in angiogenesis in human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC) seeded on PEG hydrogels containing grafted VEGF(165) and adhesion peptides Arg-Gly-Asp-Ser (RGDS). Our data suggest that the covalent incorporation of VEGF(165) into PEG hydrogels encourages the upregulation of signaling proteins responsible for increases in endothelial cell proliferation, cell migration, and the survival after apoptosis-inducing events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide.

Microvascularization of tissue engineered constructs was achieved by utilizing a VEGF-mimicking peptide, QK, covalently bound to a poly(ethylene glycol) hydrogel matrix. The 15-amino acid peptide, developed by D'Andrea et al., was modified with a PEG-succinimidyl ester linker on the N-terminus of the peptide, then photocrosslinked onto the surface or throughout PEG hydrogels. PEGylation of the ...

متن کامل

VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression.

Growth of new blood vessels (angiogenesis), required for all tumor growth, is stimulated by the expression of vascular endothelial growth factor (VEGF). VEGF is up-regulated in all known solid tumors but also in atherosclerosis, diabetic retinopathy, arthritis, and many other conditions. Conventional VEGF isoforms have been universally described as proangiogenic cytokines. Here, we show that an...

متن کامل

TNF-α-induced ICAM-1 expression and monocyte adhesion in human RPE cells is mediated in part through autocrine VEGF stimulation

PURPOSE Local inflammation at the RPE cell layer is associated with inflammatory cell migration and secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α. TNF-α upregulates intercellular adhesion molecule (ICAM)-1 expression on the RPE, which allows lymphocyte function-associated antigen-1 (LFA-1) to bind on leukocytes that contribute to leukocyte adhesion at sites of inf...

متن کامل

Standardized Punica Granatum Pericarp Extract, Suppresses Tumor Proliferation and Angiogenesis in a Mouse Model of Melanoma: Possible Involvement of PPARα and PPARγ Pathways

Melanoma is a challenging disease to treat. Punica granatum L. has a potential anticancer effect. This study determined the antiproliferative and antiangiogenic potential of the extract from pomegranate peel (PPE) in melanoma. Melanoma cells (1 × 106) were injected to C57BL6 mice subcutaneously. On 8th day, mice were randomly divided into 9 groups. Group 1 was considered as control and received...

متن کامل

Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature.

Various laboratories have reported that local subcutaneous or subdermal injection of VEGF(165) at the time of surgery effectively attenuated ischemic necrosis in rat skin flaps, but the mechanism was not studied and enhanced angiogenesis was implicated. In the present study, we used the clinically relevant isolated perfused 6 x 16-cm pig buttock skin flap model to 1) test our hypothesis that VE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 301 5  شماره 

صفحات  -

تاریخ انتشار 2011